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Abstract

Two-phase pressure driven laminar strati®ed pipe ¯ow is studied with emphasis on the wall and
interfacial shear stresses. The basic solution of the Navier±Stokes equations is recast into a simpler form,
alleviating physical interpretation and constituting a convenient basis for further developments. Utilizing
two-phase symmetry facilitates writing the velocity ®eld for each phase as one generic expression, which
is then split into a linear combination of two terms. The ®rst term equals the single-phase free surface
¯ow of either phase due to the given driving forces. The second term links the phases together and
represents the shear ¯ow given by the interfacial drag from the opposite phase. The corresponding
expression for the interfacial shear stress now emerges naturally as part of the solution of the boundary
value problem. The wall shear stresses are obtained by formal di�erentiation. The limiting behaviour of
the wall and interfacial shear stresses in the triple points, where the ¯uid±¯uid interface meets the pipe
wall, is obtained by application of residue calculus. Surprisingly, it proves possible to integrate out the
Fourier integrals in the expressions for the mean wall and interfacial shear stresses. The expressions for
the mean wall shear stresses are demonstrated to be equivalent to the ¯uid momentum balances, thus
con®rming consistency. The new and remarkably simple closed form expression for the mean interfacial
shear stress, however, represents the local solution of the boundary value problem at the interface, not
obtainable from a regular force balance. It thus complements the momentum balances, facilitating a
simple computation of the exact general solution for the mean wall and interfacial shear stresses for a
given holdup and pressure drop in a given pipe containing a given pair of ¯uids. The equation system
developed here forms the basis for the inversion of the laminar strati®ed pipe ¯ow problem in terms of
¯ow rates. The corresponding, however, considerably more transparent, channel ¯ow solution is utilized
as a guide to the pipe ¯ow problem. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This article is concerned with the study of the analytic solution for two-phase laminar strati®ed
pipe ¯ow in terms of holdup and pressure drop. Special emphasis is put on the expressions for the
wall and interfacial shear stress. It covers the basic solutions for the velocity ®eld, the
corresponding wall and interfacial shear stress distributions and their mean values. The limiting
behaviour of the shear stresses in the triple points, where the ¯uid±¯uid interface meets the pipe
wall is also given. The equations constitute the basis for the inversion of the laminar pipe ¯ow
problem in terms of ¯ow rates, i.e. the correct formulation for holdup and pressure drop
computations, and thus also the natural formulation from an engineering point of view. The
actual inversion of the laminar ¯ow problem will, however, be addressed later.
Thestudy of two-phase laminar strati®ed pipe ¯ow was launched as a fundamental approach

for obtaining a better theoretical basis for the development of 1D ¯ow models. Laminar ¯ow, of
course, constitutes a particularly simple special case in that an exact solution of the Navier±
Stokes equations is possible. It was believed to be valuable to carefully examine, and understand,
this solution before moving on to the more relevant, however, substantially more complicated
turbulent ¯ow case. The intention was to look for principles which might carry over to turbulent
¯ows. In 1D turbulent ¯ow, the expressions for the mean wall and interfacial shear stresses
constitute the basic closure laws, which must be determined in order to predict the ¯ow. It was
thus natural to focus on the corresponding expressions in laminar ¯ow. The analysis turned out
to reveal some up until now unpublished results, which will be presented here. Turbulent ¯ows
will not be considered (thus avoiding any confusion with the turbulent ¯ow case). Some
interesting results concerning the application of laminar ¯ow theory to turbulent ¯ows may,
however, be found in Biberg (1999a).
Many workers have studied the analytic solution for two-phase laminar strati®ed pipe ¯ow.

The earliest basic solution of the Navier±Stokes equations known to the authors, i.e. the solution
for the velocity ®eld in terms of holdup and pressure drop, is given by Teletov (1946) who solved
the problem using Poisson integrals. Later Semenov and Tochigin (1961) developed the solution
in terms of Fourier integrals. They also obtained the corresponding expressions for the mean
velocities by integration. Rosant (1986) obtained an alternative solution in terms of Fredholm
integrals. Considering horizontal ¯ow only, and applying Fourier integrals, Bentwich (1964)
solved the more complicated problem in which the interface is assumed to have the circular shape
given by an isoline in the bipolar coordinate system. Depending on a single parameter, the
interface in Bentwich's solution may assume all stages between a circular-cylinder (annular ¯ow)
and an arc-segment of a circle with a possible in®nite radius corresponding to a ¯at interface. The
physical mechanism determining the radii of the surface curvature was not considered. The basic
solutions for the velocity ®eld as given by Bentwich, Semenov and Tochigin coincide in the ¯at
interface horizontal ¯ow case. Brauner et al. (1996a) derived the expressions for the wall and
interfacial shear stress from Bentwich's solution, by formal di�erentiation.1 They studied the

1 Brauner et al.'s claim (pp. 104 and 120) that (Bentwich's, 1964) solution is inapplicable in practical computations

due to singularities of the integrand is based on a misconception Ð there are no singularities in the integrand. In
fact, disregarding some minor formal di�erences, the solution considered by Brauner et al. is identical to Bentwich's
solution.
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limiting behaviour of the shear stress in the triple points, where the ¯uid±¯uid interface meets
the pipe wall, mainly by numerical experimentation. An analytic result was, however, obtained
in the special case of equal phase's holdup. Brauner et al. (1996b) applied Bentwich's solution
to study the e�ect of surface curvature associated with the action of surface tension forces in
small-scale systems. They determined the (constant) radius of interfacial curvature by
application of an energy argument. (The actual shape of the interface is not determined in this
study. It is simply a priori assumed to be given by an arc segment of a circle.)
Other relevant analytic studies of two-phase laminar±laminar strati®ed pipe ¯ow are given

by Packham and Shail (1971), Ranger and Davis (1979) and Lightstone and Chang (1991).
Numerical solutions are given by Charles and Redberger (1962), Gemmell and Epstein (1962),
Yu and Sparrow (1967) and Masliyah and Shook (1978). The analytic solution for the related
rectangular duct ¯ow problem is considered by Tang and Himmelblau (1963) and Charles and
Lilleleht (1965). The channel ¯ow problem is studied in e.g. Coutris et al. (1989). The solution
for a liquid in laminar ¯ow in the bottom of a pipe, subject to a constant prescribed interfacial
shear stress distribution, approximating the action of a turbulent gas in the upper portion of
the pipe, is also relevant for the present study, see Biberg (1999b).
We will only consider ¯ows with a ¯at interface here. The e�ect of pipe inclination, which is

connected to a number of interesting two-phase ¯ow phenomena such as e.g. the possibility of
back¯ow in either phase, will, however, be accounted for. Our interest in the two-phase
laminar strati®ed pipe ¯ow is of a purely analytical nature. No comparisons with experiments
are involved. It is, however, generally accepted that the solution of the Navier±Stokes
equations agrees closely with reality provided that the underlying premises are ful®lled. The
validity of laminar ¯ow theory to two-phase ¯ows has been experimentally veri®ed by Yu and
Sparrow (1969) in a study of oil/water ¯ow in a horizontal 9/16 in. high and 9/8 in. wide
rectangular duct. Interestingly, they found the ¯ow and pressure drop to be insensitive to the
presence of very small interfacial waves, thus extending the applicability of the non-wavy
interface assumption in this case. It is beyond the scope of this work to rigorously establish for
which parameter range two-phase ¯at interface laminar strati®ed pipe ¯ow is physically
realizable. However, it is known that the transition to turbulent ¯ow, given by a Reynolds
number of approximately 2000 in single-phase pipe ¯ow, seems to take place at a somewhat
lower Reynolds number in two-phase ¯ow. The enhanced transition is probably caused by
interfacial instabilities leading to the formation of interfacial waves. Interfacial curvature
connected to viscous e�ects may be observed in low density di�erence systems, see e.g. Joseph
(1984). Similarly, surface tension forces may cause surface curvature in small scale systems
(capillary tubes). In a large scale system with a certain density di�erence, however, the ¯uid±
¯uid interface will always be ¯at (horizontal), except perhaps for a narrow region in the
vicinity of the pipe wall, where surface tension forces in¯uence the interface to wall contact
angle.

2. The boundary value problem

The boundary value problem for two-phase laminar strati®ed pipe ¯ow is de®ned in Fig. 1.
A less dense ¯uid g is ¯owing on top of a more dense ¯uid l. The ¯uids f � g and l are
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assumed to be immiscible, homogeneous, incompressible and Newtonian, with constant
viscosities Zf and densities rf: The pipe inclination to the horizontal is y: The ¯ow is referred to
a Cartesian coordinate system �x, y, z), orientated with the z-axis pointing in the direction of
¯ow and the ¯uid±¯uid interface i de®ned by y � 0:
The ¯ow is assumed to be parallel and steady state i.e. with phase velocity vectors given by

Uf � uf�x, y�iz: The y-components of the Navier±Stokes equations for each phase thus reduce
to

@p

@y
� rfg cos y � 0 �1�

Di�erentiation of Eq. (1) with respect to z yields

@

@z

�
@p

@y

�
� @

@y

�
@p

@z

�
� 0

which shows that the pressure gradient in the z-direction in each phase is constant in a vertical
cross section. Since the pressure at the interface must be equal in each phase for all z, the
pressure gradient must also be equal in each phase. The pressure in a cross section of the pipe,
however, varies hydrostatically, as may be con®rmed by integration of Eq. (1). The z-
components of the Navier±Stokes equations are given by

r 2uf � Bf

Zf
in Af �2�

in which

Bf � @p
@z
� rfg sin y �3�

Fig. 1. De®nition sketch.
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where ÿBf is the constant driving force in phase f in the direction of ¯ow and Af is the
corresponding ¯ow area occupied by ¯uid f and enclosed by the corresponding wall wetted
perimeter Sf and the ¯uid±¯uid interface Si: The boundary conditions are the no-slip
conditions on the pipe wall and interface, given by

uf � 0jSf
�4�

and

ug � uljSi
�5�

respectively, and the conditions for continuous shear stress across the interface, given by

Zf
@uf
@y

����
Si

� ti �6�

in which ti denotes the interfacial shear stress distribution.

3. Solving the boundary value problem

In the following, corresponding equations for the ¯uids f � g and l will often be written as a
single expression for ¯uid f. This saves space. More importantly, however, it emphasizes the
natural two-phase symmetry of the boundary value problem. We apply the notation2or3 in
order to account for the occurrence of opposite signs in corresponding terms. The upper and
lower signs are to be associated with the less and more dense ¯uids f � g and l, respectively,
¯owing in the upper and lower portions of the pipe. We now seek a solution of the boundary
value problem (2)±(6) in the form

uf � u p
f � ff �7�

in which the Hagen±Poiseuille solution for single-phase pipe ¯ow of phase f, given by

u
p
f � ÿ

Bf

4Zf
�R2 ÿ r2� �8�

is used as a particular solution, and ff are the homogeneous solutions. In the coordinate
system de®ned in Fig. 1, we have r2 � x 2 � �y2R cos df �2, where R is the pipe inner radius.
The wetted angles df are interrelated by dg � dl � p: The one-to-one relation between df and
the corresponding phase fractions Ef � Af=A, may be obtained by application of simple
trigonometry to Fig. 1, yielding

Ef � 1

p

�
df ÿ 1

2
sin 2df

�
�9�

There are, however, no known simple solutions (9) for df in terms of Ef, see Biberg (1999c). We
will therefore for simplicity, work with the wetted angles df as a substitute for the more
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commonly used phase fractions Ef: We will also frequently refer to expressions depending on df
as being holdup dependent, since a given holdup El corresponds to the void fraction Eg � 1ÿ El,
and thus (implicitly) determines df through Eq. (9).
The bipolar �x, z� coordinate system is the natural orthogonal coordinate system for the

strati®ed ¯ow geometry. It transforms the wall wetted perimeters Sf and the ¯uid±¯uid
interface Si into in®nite horizontal parallel (iso) lines de®ned by (distinct) constant z-values for
which ÿ1 < x < �1: We use the de®nition

x � R sin dl sinh x
cosh x� cos z

and y � R sin dl sin z
cosh x� cos z

�10�

which represents a translation z � pÿ z 0 of the standard de®nition found in mathematical
handbooks and used by most workers. The rede®ned �x, z)-axes coincide with the interface and
vertical symmetry line of the pipe, respectively. This reference frame has the advantage of
yielding symmetric results for the phases g and l with respect to the interface: The interfacial
and wall wetted perimeters are now simply given by the isolines z � 0 and z �2df,
respectively, see Fig. 2.
Expressing the particular solutions (8) in the bipolar coordinates �x, z� as de®ned by Eq.

(10), yields

u
p
f � ÿ

BfR
2 sin df sin

ÿ
df3z

�
2Zf�cosh x� cos z� �11�

(since sin dg � sin dl). The boundary value problem for the homogeneous solutions ff expressed
in bipolar coordinates may be obtained by inserting Eq. (7), using Eq. (11), in the boundary
value problem (2)±(6). The di�erential equation (2), yields

@ 2ff

@x2
� @

2ff

@z2
� 0 in Af �12�

Fig. 2. The pipe cross section in bipolar coordinates.
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The no-slip conditions on the pipe walls (4) and interface (5) yield

ff

ÿ
z �2df

� � 0 �13�
and

fl�z � 0� ÿ fg�z � 0� � R2

4

 
ZgBl sin2 dl ÿ ZlBg sin2 dg

ZgZl

!
sech2

�
x
2

�
�14�

respectively. Finally, the continuous shear stress conditions on the interface (6) yield

Zf
@ff

@z

����
z�0
� R sin df

2

�
ti3

BfR cos df
2

�
sech2

�
x
2

�
�15�

(by use of the chain rule for di�erentiation and the fact that @x=@y � 0 and @z=@y �
2 cosh2�x=2�=�R sin df � for z � 0). The boundary value problem for the homogeneous solutions
(12)±(15) may now be solved using the Fourier cosine transform pair de®ned by

~f�o� � 2

p

�1
0

f�x� cos ox dx �16a�

f�x� �
�1
0

~f�o� cos ox do �16b�

in which ~f denotes the Fourier cosine transform of f. The Fourier transform (16a) of the
di�erential equations (12) yields

@ 2 ~ff

@z2
ÿ o2 ~ff � 0 in ~Af �17�

The Fourier cosine transform (16a) of the no-slip conditions on the pipe wall and interface (13)
and (14) yield

~ff

ÿ
z �2df

� � 0 �18�
and

~fl�z � 0� ÿ ~fg�z � 0� � R2

 
ZgBl sin2 dl ÿ ZlBg sin2 dg

ZgZl

!
o

sinh op
�19�

respectively, after application of the known relation

2

p

�1
0

sech2

�
x
2

�
cos ox dx � 4o

sinh op
�20�

Finally, applying the Fourier cosine transform (16a) and the relation (20) to the conditions for
continuous shear stress at the interface (15) yields
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Zf
@ ~ff

@z
jz�0 � 2R sin df

�
Ti�o�3BfR cos df

2

�
o

sinh op
�21�

in which the coe�cient Ti�o� is de®ned by

2

p

�1
0

ti sech2

�
x
2

�
cos ox dx � 4o

sinh op
Ti�o� �22�

The de®nition (22) plays a central role in the present analysis. It was introduced in order to
keep track of the in¯uence of the interfacial shear stress throughout the equation system. It
was chosen by the criterion that Ti�o� � tci � constant in the event that the boundary value
problem (2)±(6) is simpli®ed to that of a single ¯uid f subject to a constant (prescribed) surface
shear stress distribution ti � tci � constant, as studied in Biberg (1999b). Whether this criterion
is satis®ed may be realized by comparing Eq. (22) with (20). The de®nition (22) does thus have
the interesting side e�ect of reducing the equations given here to the corresponding expressions
for a single ¯uid f subject to a constant surface shear stress by simply replacing any occurrence
of Ti�o� with tci � constant: (This does not, however, apply to the results of the triple point
analysis given in Appendix B, as will be explained later.)
Considering the no-slip conditions on the pipe wall (18), the solutions of Eq. (17) may be

written

~ff � Cf�o� sinh
ÿ
o
ÿ
df3z

�� �23�
in which the coe�cients Cf�o� are determined by the continuous shear stress conditions (21),
yielding

Cf�o� � 2R sin df
Zf

�
BfR cos df

2
3Ti�o�

�
1

sinh op cosh odf
�24�

The coe�cient Ti�o� is now given by use of the no-slip condition on the interface (19),
yielding

Ti�o� �
R

�
ZgBl

h
sin dl ÿ

�
tanh odl

o

�
cos dl

i
ÿ ZlBg

h
sin dg ÿ

�
tanh odg

o

�
cos dg

i�
2

�
Zg
�

tanh odl
o

�
� Zl

�
tanh odg

o

�� �25�

Now as Ti�o� is known, Eq. (22) determines the interfacial shear stress distribution i.e.
applying the inverse Fourier cosine transform (16b) to Eq. (22), yields

ti � 4 cosh2

�
x
2

��1
0

Ti�o�o cos ox
sinh op

do for ÿ1RxR1 �26�

The de®nition (22) thus causes the expression for the interfacial shear stress distribution (26) to
be determined by the no-slip condition on the interface (5) as part of the solution for velocity
®eld, in complete analogy with the corresponding channel ¯ow problem, see Eq. (A5) in
Appendix A. Applying the inverse Fourier transform (16b) to Eq. (23) yields the homogeneous
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solutions ff: Eq. (7) may thus be written as

uf � u
p
f �

�1
0

Cf�o�sinh
ÿ
o
ÿ
df3z

��
cos ox do �27�

Inserting Eqs. (11) and (24) in Eq. (27) yields the ®nal solution for the velocity ®eld, given by

uf � ÿBf R
2 sin df
2Zf

"
sin
ÿ
df3z

�
cosh x� cos z

ÿ 2 cos df

�1
0

sinh
ÿ
o
ÿ
df3z

��
sinh op cosh odf

cos ox do

#z�������������������������������������������������������������������}|�������������������������������������������������������������������{free surface flow

3
2R sin df

Zf

�1
0

Ti�o�
sinh

ÿ
o
ÿ
df3z

��
sinh op cosh odf

cos ox do

z�������������������������������������������}|�������������������������������������������{shear flow

for

�ÿ1RxR1
dfR2zR0

�28�

Eq. (28) is a generic expression for the velocity ®eld in phase f for a given pressure drop and
holdup, represented by the driving forces ÿBf and wetted angles df, respectively, see Eqs. (3)
and (9). The expression may be demonstrated to be equivalent to the separate expressions for
the phases f � g or l obtained by Semenov and Tochigin (1961) using the more inconvenient
(asymmetrical) x and z 0 � pÿ z coordinate system. The introduction of the coe�cient Ti�o�
given by Eq. (25) has given us the additional advantage of splitting the solution (28) into a
linear combination of two terms with distinct physical interpretations. The key to interpreting
these terms is given by the fact that Ti�o� represents the in¯uence of the interfacial shear
stress, through the de®nition (22). The interfacial shear stress does thus not a�ect the ®rst term
in Eq. (28). In fact, the velocity ®eld (28) reduces to this term for ti � 0, for which Ti�o� � 0
by Eq. (22), and the second (shear ¯ow) term vanishes. The ®rst term in Eq. (28) therefore
represents the single-phase free surface ¯ow of ¯uid f due to a given body force ÿBf: The shear
¯ow term in Eq. (28) acts as a coupling term between the phases and represents the part of the
velocity ®eld in phase f given by the interfacial drag from the opposite phase.
It may be useful to compare the velocity ®eld (28) with the corresponding, however,

signi®cantly more transparent expression in channel ¯ow, see Eq. (A4) in Appendix A. It may
also be interesting to note that Ti�o� reduces to the constant interfacial shear stress
distribution in the special case of equal ¯uid properties i.e.

Ti�o� �2
BfR cos df

2
for

�
rg � rl
Zg � Zl

�29�

This relation may be used to check the single-phase limit in the equations: Introducing Eq. (29)
in (24) yields Cf�o� � 0: The velocity ®elds (27) thus reduce to the Hagen±Poiseuille solutions
for single-phase ¯ow (8). Moreover, introducing Eq. (29) in the expression for the interfacial
shear stress distribution (26) yields
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ti �2
BfR cos df

2

"
4cosh2

�
x
2

��1
0

o cos ox
sinh op

do

#z����������������������������}|����������������������������{�1

�2
BfR cos df

2
for

�
rg � rl
Zg � Zl

�30�

further proving consistency. (The expression in the square brackets may be evaluated to unity
by application of the inverse Fourier cosine transform (16b) of Eq. (20).)

4. Wall and interfacial shear stress distributions

The shear stress distribution may be obtained by a formal di�erentiation of the velocity ®eld
(28). We are mainly interested in the wall and interfacial shear stresses. Both the pipe wall and
the ¯uid±¯uid interface are described by surfaces where z � constant, see Fig. 2. The shear
stress in the z-direction (direction of ¯ow) on a surface z � constant, is given by

tf, z, z � Zf

�
cosh x� cos z

R sin df

�
@uf
@z

�31�

The wall shear stresses tf, de®ned in Fig. 1, are thus given by

tf �3tf, z, z
ÿ
z �2df

� �32�
Formally, carrying out the di�erentiation implied by Eq. (31), using Eq. (28) and considering
Eq. (32), thus yields the ®nal expression for the wall shear stresses, given by

tf � ÿBfR

2

"
1ÿ 2

ÿ
cosh x� cos df

�
cos df

�1
0

o cos ox
sinh op cosh odf

do

#z�����������������������������������������������������������}|�����������������������������������������������������������{free surface flow

32
ÿ
cosh x� cos df

� �1
0

Ti�o� o cos ox
sinh op cosh odf

do

z���������������������������������������������}|���������������������������������������������{shear flow

for ÿ1RxR1

�33�

in which the contributions from the free-surface-¯ow and shear ¯ow terms in Eq. (28) are
indicated. The ®rst term in Eq. (33) thus equals the shear stress in free surface ¯ow due to a
given body force ÿBf, whereas the second term represents the shear stress given by the
interfacial drag from the opposite phase. Applying Eq. (29), we ®nd that Eq. (33) yields the
correct constant shear stress tf � ÿBfR=2 in the single-phase case of equal ¯uid properties.
The expression for the interfacial shear stress distribution (26) was obtained as part of the

solution for the velocity ®eld (28). As a consistency check, however, the identical expression
may be obtained by di�erentiation using Eq. (31) with z � 0, and either of the velocity ®elds
f � g or l as given by Eq. (28). The contribution from the free surface, ¯ow term in the velocity
®eld may be demonstrated to be zero (in agreement with the de®nition), whereas the
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contribution from the shear ¯ow term yields Eq. (26). The expression for the shear stress on
the vertical symmetry line of the pipe x � 0, used in some of the numerical examples to follow,
may be obtained by using Eqs. (28) and (31) and will not be given here. The shear stress
distributions (33) and (26) agree with the corresponding expressions for horizontal ¯ow,
derived from Bentwich's (1964) circular interface (and horizontal ¯ow) solution by Brauner et
al. (1996a). The expressions (33) and (26), however, include the e�ect of a pipe inclination.

5. Wall and interfacial shear stress in the triple points

An interesting aspect of the wall and interfacial shear stresses (33) and (26) is their limiting
behaviour in the triple points x421, where the ¯uid±¯uid interface meets the pipe wall, see
Fig. 2. Due to symmetry it su�ces to consider e.g. x41: The correct limiting behaviour may
then be obtained by use of residue calculus. A complete analysis, yielding the results presented
in this section, is given in Appendix B. We start by noting that the equal viscosity case Zg=Zl �
1 must be treated separately. This is also the situation for the high and low viscosity ratio
limits Zg=Zl41 and Zg=Zl40, respectively, in the event that the more viscous ¯uid occupies a
larger portion of the pipe cross section. Otherwise, these limits are contained in the remaining
analysis, which for Zg=Zl < 1 is divided into the three distinct cases: dl < p=2, dl � p=2 and dl >
p=2: Two-phase symmetry assures that the corresponding cases for Zg=Zl > 1 are given by
simply switching the indices g and l in the analysis yielding the results for Zl=Zg < 1 and
dg < p=2, dg � p=2 or dg > p=2 (i.e. Zg=Zl > 1 and dl > p=2, dl � p=2 or dl < p=2, respectively).
Two-phase symmetry also provides the results for the high viscosity ratio limit Zg=Zl41 i.e.
Zl=Zg40 from the low viscosity ratio limit Zg=Zl40: When utilizing two-phase symmetry,
however, the opposite sign in the interfacial shear stress as seen by the ¯uids g and l must be a
accounted for.
Generally, the wall and interfacial shear stresses will all be zero in the triple points if the

more viscous ¯uid occupies a smaller portion of the pipe cross section. We thus have

tf�x41� � ti�x41� � 0 for

�
dl < p2
Zg=Zl < 1

�34�

The interfacial shear stress remains zero in the triple points when the ¯uids occupy exactly half
the pipe cross section each. The wall shear stresses, however, attain ®nite and generally non-
zero limits. We have

tf�x41� � ÿBfR

2
3

ÿ
ZgBl ÿ ZlBg

�
R

2
ÿ
Zg � Zl

� and ti�x41� � 0 for

�
dl � p=2
Zg=Zl < 1

�35�

There is thus in this case a discontinuity in the wall shear stress across the interface, given by

tl�x41� ÿ tg�x41� � ÿR
2

ÿ
Bg � Bl

��Zl ÿ Zg
Zg � Zl

�
for

�
dl � p=2
Zg=Zl < 1

�36�
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We also note that Eq. (35) yields tg�x41� � ti�x41� � 0, whereas tl�x41� � ÿR�Bg �
Bl�=2 for Zg=Zl40:
If the more viscous ¯uid occupies a larger portion of the pipe cross section and Zg=Zl 6�0 or
1, the wall and interfacial shear stresses tend to in®nity. The limiting behaviours are given by

tf�x41�0Ke�1ÿv0 �x

jcos dfv0j and ti�x41�0ÿ Ke�1ÿv0 �x for

�
dl > p=2
0 < Zg=Zl < 1

�37�

in which K and 0 < v0 < 1 are given by Eqs. (B11) and (B7) in Appendix B. The sign of the
wall shear stresses in the vicinity of the triple point are thus equal and opposite to that of the
interfacial shear stress. (In e.g. horizontal ¯ow K > 0 for Zg=Zl < 1: In this case, the wall shear
stresses thus tend to in®nity through positive values when approaching the triple point,
whereas the interfacial shear stress becomes negative.) The wall and interfacial shear stresses
remain integrable, even though the triple point limits tend to in®nity. This may be con®rmed
by multiplying triple point limits (37) with the appropriate di�erential elements along the pipe
wall or interface, given by

dS � R sin df dx
cosh x� cos z

�38�

with z �2df or z � 0, respectively. The fact that the corresponding dS02R sin dfeÿx dx for
x41 proves the integrability.
We now turn to the special cases. We start with considering the low viscosity ratio limit

Zg=Zl40: The corresponding triple point limits are contained in the above analysis provided
that the more viscous ¯uid l occupies up to half the pipe cross section. The special case in
which ¯uid l occupies more than half the pipe cross section, however, yields

tg�x41� � ti�x41� � 0 and tl�x41�0 p2

d2
l sin p 2

2dl

e
ÿ p
2dl

x
for

�
dl > p=2
Zg=Zl40

�39�

The results (34), (35) and (39), combined with two-phase symmetry, show that the shear stress
as seen by the less viscous ¯uid is zero in the triple points in the high and low viscosity ratio
limits Zg=Zl41 and Zg=Zl40, irrespective of holdup. The corresponding wall shear stress in
the more viscous ¯uid, however, is generally zero in the triple points if the more viscous ¯uid
occupies less than half the pipe cross section. It attains a ®nite, generally non-zero, triple point
limit if the more viscous ¯uid occupies exactly half the pipe cross section, and tends to in®nity
if the more viscous ¯uid occupies more than half the pipe cross section.
In the ®nal special case of equal ¯uid viscosities i.e. Zg=Zl � 1, the wall and interfacial shear

stresses attain the following ®nite limits in the triple points irrespective of holdup

tf�x41� � ÿR
2

ÿ
BgEg � BlEl

�
and ti�x41� �2

R cos df
2

ÿ
BgEg � BlEl

�
for

Zg=Zl � 1

�40�

The wall shear stresses are thus in this case continuous across the interface. We also have that
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tf�x41� �2ti�x41�=cos df: Moreover, there are no two-phase e�ects in horizontal ¯ow,
since horizontal ¯ow implies that Bl=Bg � 1, which combined with equal viscosities causes the
¯uids to behave as one (we will return to this point in Section 7.1). In horizontal ¯ow, the
triple point limits (40) thus reduce to the single-phase values tf � ÿBfR=2 and
ti �2BfR cos df=2, respectively (considering that Eg � El � 1). As a consistency check, we note
that Bl=Bg � 1 for equal ¯uid densities, i.e. rg=rl � 1 irrespective of pipe inclination. In the
single-phase case of equal viscosities and densities, the triple point limits (40) thus reduce
identically to the correct single-phase value.

6. Mean wall and interfacial shear stress

The mean wall and interfacial shear stresses are given by integration of the corresponding
shear stress distributions (33) and (26), respectively. Formally we have

�tf � 1

Sf

�
Sf

tf dS �41a�

and

�ti � 1

Si

�
Si

ti dS �41b�

in which the overbar indicates mean values, and the wall and interfacial perimeters are given
by

Sf � Ddf �42a�
and

Si � D sin df �42b�
respectively, where D � 2R: The expression for the mean interfacial shear stress may be
obtained from (41b) using (42b), (26) and (38) with z � 0, yielding

�ti � 2

p

�1
0

�1
0

�
Ti�o� op

sinh op

�
cos ox do dx �43�

We now utilize the fact that Fourier cosine transform (16a) of the inverse Fourier cosine
transform (16b) at o � 0, yields

2

p

�1
0

�1
0

~f�o� cos ox do dx � lim
o40�

~f�o� �44�

Applying this relation to Eq. (43) yields

�ti � lim
o40

Ti�o� �45�
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since

lim
o40

op
sinh op

� 1 �46�

Finally, taking the limit in Eq. (45) using (25) and the fact that tanh�od�=o � d for o40, we
obtain the following remarkably simple and exact expression for the mean interfacial shear
stress, given by

�ti �
R
�
ZgBl�sin dl ÿ dlcos dl� ÿ ZlBg

ÿ
sin dg ÿ dgcos dg

��
2
ÿ
Zgdl � Zldg

� �47�

Introducing Eq. (3) in (47) and rearranging slightly, yields the alternative form, given by

�ti � pR
2
ÿ
Zgdl � Zldg

��Zg�@p@z � rlg sin y

�
F�dl� ÿ Zl

�
@p

@z
� rgg sin y

�
F
ÿ
dg
�� �48�

where

F
ÿ
df
� � 1

p
ÿ
sin df ÿ df cos df

�
Eq. (48) is regarded to be one of the main results of the present analysis, and will be discussed
in some more detail in Section 7. It may, however, be noted that Eq. (48) attains the correct
single-phase limit in case of equal ¯uid properties, as given by the right-hand side of Eq. (29).
It is also interesting to observe the similarity between Eqs. (47) and (48) and the corresponding
expressions in channel ¯ow, as given by Eqs. (A5) and (A6) in Appendix A.
The expressions for the mean wall shear stresses may be found by inserting the expressions

for the wall shear stresses distribution (33) in (41a). It is more convenient, however, to apply
Eqs. (31) and (32) to Eq. (27). Using the resulting expression in Eq. (41a) immediately yields

�tf � ÿBfR

2
� Zf

Sf

2

p

�1
0

�1
0

�
Cf�o�op

�
cos ox do dx �49�

The ®rst term in Eq. (49) is the contribution from the (Hagen±Poiseuille) particular solution
(8), and thus equals the wall shear stress in single-phase ¯ow of ¯uid f. The second term in Eq.
(49) may be developed further by application of Eq. (44). Eq. (24) combined with Eqs. (45)
and (46), yields

lim
o40

Cf�o�op � 2R sin df
Zf

�
BfR cos df

2
3�ti

�
�50�

Applying Eq. (44) to (49) using Eqs. (42) and (50), thus yields

�tf � ÿBf

Sf

�
df ÿ 1

2
sin 2df

�
R23

Si

Sf
�ti �51�

Now, noting that EfpR2 � Af or that
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�
df ÿ 1

2
sin 2df

�
R2 � Af �52�

by Eq. (9), yields the ®nal result for the mean wall shear stresses, given by

�tf � ÿBf
Af

Sf
3

Si

Sf
�ti �53�

Introducing Eq. (3) in (53) and rearranging, however, we have

Af

�
@p

@z
� rfg sin y

�
� �tfSf2�tiSi � 0 �54�

which is recognized as the momentum balance for ¯uid f. We have thus recaptured the
momentum balances from the solution for the velocity ®eld. The momentum balances may be
obtained by direct integration of the di�erential equations (2), or even more conveniently by
simply equating the forces acting on the ¯uids to zero. Arriving at the momentum balances
starting with the laminar ¯ow solution, as demonstrated here, however, con®rms the
consistency of the equations. It is interesting to study the analogous development in channel
¯ow, see Eqs. (A7)±(A9).

7. Discussion

We start the discussion by noting that it may be helpful to study the analogous, however,
mathematically signi®cantly more transparent channel ¯ow problem, solved in Appendix A, in
order to fully understand the equations developed in the previous sections. The two-phase
strati®ed ¯ow geometry in a pipe, de®ned in Fig. 1, tends to complicate the pipe ¯ow solution.
We have, however, simpli®ed the equations by placing the (bipolar) coordinate axes on the
interface and vertical symmetry line of the pipe respectively, see Fig. 2. This is the appropriate
reference frame for the ¯ow. It emphasizes two-phase symmetry, yielding the distinct advantage
that corresponding expressions for the phases g and l may be written into a single generic
expression for the general phase f as in the solution for the velocity ®eld (28). A further
simpli®cation is given by the introduction of the coe�cient Ti�o� representing the interfacial
shear stress distribution through the de®nition (22). The coe�cient Ti�o� allows us to split the
solution (28) into a single-phase free surface ¯ow term and a two-phase shear ¯ow coupling
term representing the Poiseuille and Couette ¯ow parts of the solution, respectively. The
de®nition of the Ti�o� has the additional advantage that the expression for the interfacial
shear stress distribution (26) emerges naturally as a consequence of the no-slip condition at the
interface, in complete analogy with the situation in channel ¯ow. The de®nition (22) of Ti�o�
was chosen by the criterion that the solution for each phase (28) should reduce identically to
the solution for a single ¯uid f subject to a constant (prescribed) interfacial shear stress
distribution tci � constant if Ti�o� is replaced by tci : The corresponding velocity and wall shear
stress distributions are thus given by introducing Ti�o� � tci � constant in Eqs. (28) and (33),
respectively. Moreover, inserting Ti�o� � tci � constant in the expression for the interfacial
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shear stress (26) yields the consistent result ti � tci , by the same token as in Eq. (30). The
constant interfacial shear stress case2 has been considered in Biberg (1999b).
One of the main results given here, is the remarkably simple exact expression for the mean

interfacial shear stress (48) in terms of holdup (through df� and pressure drop. (Note that: the
wetted angles df are uniquely determined by a given holdup El through Eq. (9) and the fact that
Eg � 1ÿ El:) The ¯uid momentum balances (54) may be viewed as a set of two equations for
the three unknown mean wall and interfacial shear stresses, for a given holdup and pressure
drop in a given pipe containing a given pair of ¯uids. The momentum balances of course,
simply represent the result of equating the mean forces acting on the ¯uids to zero. The new
expression for the mean interfacial shear stress (48), however, represents the local solution of
the boundary value problem (2)±(6) at the interface, i.e. information not obtainable from a
regular mean force balance. This expression thus closes the problem, allowing for the
computation of the exact general solution for the mean wall and interfacial shear stresses for a
given holdup and pressure drop. This may be realized when solving the momentum balances
(54) for the wall shear stresses yielding Eq. (53), which should then be combined with Eqs. (3),
(9), (42), (48) and the fact that Af � EfpR2: The interrelation between the momentum balances
(54) and the interfacial shear stress (48) may become clari®ed by studying the corresponding
expressions in channel ¯ow, Eqs. (A9) and (A6) in Appendix A, respectively.

7.1. The scaled equations

The mean velocity and wall shear stress in single-phase ¯ow of ¯uid g are given by

U s
g � ÿ

BgR
2

8mg
�55a�

and

tsg � ÿ
BgR

2
�55b�

respectively. Scaling the mean wall and interfacial shear stresses (53) and (48) by (55b) yields
the dimensionless wall and interfacial shear stresses, given by

�tg
tsg
�
 
dg ÿ 1

2 sin 2dg
dg

!
ÿ sin dg

dg

�ti
tsg

�56�

�tl
tsg
� Bl

Bg

 
dl ÿ 1

2 sin 2dl
dl

!
� sin dl

dl

�ti
tsg

�57�

2 It may be noted that a constant interfacial shear stress distribution implies that ti � tci in the triple points (irre-

spective of holdup). The corresponding limiting behaviour of the wall shear stress is given by
tf�x421� �2tci =cos df for df < p=2 and tf�x421� � 1 for dfrp=2, see Biberg (1999b). These limits di�er
from the laminar±laminar ¯ow values, derived in Section 5.
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�ti
tsg
� p

dg � ÿZg=Zl�dl
�
F
ÿ
dg
�ÿ Zg

Zl

Bl

Bg
F�dl�

�
�58�

in which we have used Eqs. (9) and (42) and the fact that Af � EfpR2 in order to display the
holdup dependency through df: We note that the dimensionless mean shear stresses (56)±(58)
are completely determined by the viscosity and driving force ratios Zg=Zl and Bl=Bg,
respectively, for a given holdup i.e. df: This is also the case for the corresponding dimensionless
velocity ®eld, as given by scaling (28) with (55a). We will now (at least to some extent) attempt
to analyse the e�ect of these parameters one at a time.

7.2. Horizontal or friction dominated ¯ow

The driving forces in the direction of ¯ow Bf are de®ned by Eq. (3). In a horizontal pipe the
driving force ratio Bg=Bl is equal to unity since the pressure gradient @p=@z is equal in both
phases and the body forces in the direction of ¯ow rfgsin y are zero. The non dimensionalized
laminar ¯ow (de®ned in the previous section) is thus in this case completely determined by the
viscosity ratio Zg=Zl for a given holdup. The ¯ow in an inclined pipe will closely resemble the
¯ow in a horizontal pipe provided the pressure gradient is su�ciently large with respect to the
body forces in the more dense ¯uid l Ð i.e. when jrlg sin y=�@p=@z�j � 1 yielding Bg=Bl11:
The pressure gradient is in this case balanced by the wall shear stresses, and the ¯ow may be
characterized as friction dominated. Fig. 3 shows a complete picture of the possible values for
the non-dimensional mean wall and interfacial shear stresses (56)±(58), in the horizontal or
friction dominated ¯ow.The mean interfacial shear stress (right hand plot) is seen to increase as
the viscosity ratio decreases. It is higher than in single-phase ¯ow for which Zg=Zl � 1, when
Zg=Zl < 1 and lower when Zg=Zl > 1: The increase in the interfacial shear stress for a decrease
in the viscosity ratio is caused by the corresponding increase in the velocity in ¯uid g, with
respect to the velocity in ¯uid l. Generally, the interfacial shear stress is positive below a
certain threshold holdup lying above or below df � p=2, depending on whether
Zg=Zl < 1 or > 1, respectively. For a given pressure gradient there are thus always holdup
values for which ¯uid g is pulling ¯uid l and vice versa. The interfacial shear stress is, however,

Fig. 3. Dimensionless mean wall and interfacial shear stress as given by Eqs. (56) and (58) in horiziontal and
friction dominated ¯ow for Zg=Zl � 0:01, . . . ,100: The limits Zg=Zl40 are indicated by the dash-dot lines.
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seen to be either positive or negative Ð irrespective of holdup Ð in the limiting cases where
Zg=Zl40 or Zg=Zl41, respectively (dash-dot lines). These cases correspond to a physical
situation in which the more viscous ¯uid ``freezes'' with respect to the less viscous ¯uid, which
in this case ¯ows on as in single-phase closed duct ¯ow.
The symmetry in the mean wall shear stress (56)±(57), in horizontal or friction dominated

¯ow �Bg=Bl � 1� may be observed in the left hand and center plots in Fig. 3. (The plots would
be identical if �tg=tsg were plotted vs. dg=p). The mean wall shear stress in the more viscous ¯uid
is higher than in single-phase ¯ow (unity), whereas the mean wall shear stress in the less
viscous ¯uid is lower. This is caused by the fact that the more viscous ¯uid represents a slower
¯ow from the viewpoint of the less viscous ¯uid. The associated increased drag, opposing the
direction of ¯ow, thus causes the corresponding velocity and wall shear stress to decrease.
From the viewpoint of the more viscous ¯uid, however, the presence of the less viscous ¯uid
represents a faster ¯ow. The associated increased drag, in the direction of ¯ow, causes the
corresponding velocity and wall shear stress to increase. The highest possible mean wall shear
stress in horizontal or friction dominated ¯ow: �tf=tsg � 1� 4=p211:41 is obtained for df � p=2
in ¯uid g or l as Zg=Zl41 or Zg=Zl40, respectively.
Fig. 4 shows the wall and interfacial shear stress distributions (33) and (26) corresponding to

the mean values in Fig. 3 for Zg=Zl� 1, 0:5, 0:1, 0:01, 0 and dl� p=4, p=2, 3p=4: The velocity
and shear stress distributions on the vertical symmetry line of the pipe as given by (28) and
(31) for x � 0 are also shown. They are plotted as functions of the dimensionless distance ( y
+ h )/D from the bottom of the pipe, where h is the depth of ¯uid l. The wall shear stress is
plotted as a function of pipe inner perimeter measured in degrees from the bottom of the pipe.
The interfacial shear stress is plotted on half the interface from the vertical symmetry line to
the pipe wall, in terms of the dimensionless coordinate x=R sin dl: The velocity and shear stress
distributions in Fig. 4 are non dimensionalized using (55a) and (55b), respectively.
The shear stress distributions in Fig. 4 are consistent with the corresponding mean values in

Fig. 3. Moreover, the limiting behaviour in the triple points at the interface agrees with the
analysis in Section 5. We note in particular that the interfacial shear stress and the wall shear
stress in the less viscous ¯uid g are zero in the triple points in the zero viscosity ratio limit
Zg=Zl40, irrespective of holdup (see dash dot lines). The triple point limits agree with the
single-phase closed duct ¯ow situation experienced by ¯uid g in this case. It is also interesting
to observe the increasingly nonlinear behaviour of the shear stress on the vertical symmetry
line as the viscosity ratio decreases. The corresponding shear stress in horizontal or friction
dominated channel ¯ow is by comparison given as a single straight line across the entire
channel irrespective of viscosity ratio, see Eq. (A7) in Appendix A with Bg=Bl � 1: Another
interesting detail may be observed when studying the velocity and shear stress pro®les for dl �
3p=4 and Zg=Zl � 0:1 (marked 
� in Fig. 4. The velocity pro®le is in this case seen to be near
vertical across the interface and the interfacial shear stress low. Both ¯uids are thus close to
being in free surface ¯ow in this case. This is con®rmed by the corresponding low value of
mean interfacial shear stress in Fig. 3. For the higher viscosity ratio Zg=Zl � 0:5, the mean
interfacial shear stress is negative and ¯uid l is pulling ¯uid g, see Fig. 3. The opposite is the
case for the lower viscosity ratio Zg=Zl � 0:01:
Two-phase symmetry facilitates the study of the horizontal or friction dominated ¯ow case

in which the upper less dense ¯uid g is the more viscous and Zg=Zl�1, 2, 10, 100, 1, by simply
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Fig. 4. Velocity and shear stress distributions in horizontal or friction dominated ¯ow. Top two rows: velocity and
shear stress on vertical symmetry line. Bottom rows: wall and interfacial shear stress. Columns left to right:
dl � p=4, p=2, 3p=4: Thick solid lines: single-phase ¯ow Zg=Zl � 1: Thin solid lines: two-phase ¯ow with

Zg=Zl � 0:5, 0:1, 0:01: Dash dot lines: limit Zg=Zl40:

D. Biberg, G. Halvorsen / International Journal of Multiphase Flow 26 (2000) 1645±1673 1663



turning Fig. 4 upside down. The sign of the interfacial shear stress and the shear stress on the
vertical symmetry line must, however, in this case be reversed, if the positive directions as
de®ned in Fig. 1 are to be kept. It must also be understood that; the positive ¯ow direction is
now from right to left; the velocity is scaled by the mean velocity for single-phase ¯ow of ¯uid
l i.e. U s

l � ÿBlR
2=8ml; the dash-dot line indicates the limit Zg=Zl � 1; the distance ( y + h )/D

is measured from the top of the pipe (h = depth of ¯uid g ); and ®nally that the wall shear
stress is plotted as a function of pipe inner perimeter measured in degrees from the top of the
pipe. The scaling of the shear stresses is not a�ected, however, since the wall shear stress in
single-phase ¯ow of both ¯uid g and l are given by (55a) in horizontal or friction dominated
¯ow in which Bg � Bl:

7.3. Inclined ¯ow and the two-phase gravity e�ect

The non-dimensional horizontal or friction dominated ¯ows, discussed in the previous
section, are for a given holdup, completely determined by the viscosity ratio Zg=Zl: Generally,
however, in inclined pipes the driving force ratio Bl=Bg must also be considered, see Section
7.1. In single-phase ¯ow a change in the pipe inclination (for a given holdup) simply alters the
driving force, leaving the corresponding non dimensionalized ¯ow unchanged. In two-phase
¯ow, however, there is an additional two-phase gravity e�ect given by the deviation of the
driving force ratio from unity in inclined pipes Ð i.e. the value of 1ÿ Bl=Bg: The two-phase
gravity e�ect thus represents the departure from the conditions in horizontal or friction
dominated ¯ow in an inclined pipe. We have rg=rlR1 by de®nition. The two-phase gravity
e�ect is zero in the special case that rg=rl � 1 for which Bl=Bg � 1, and increases as the density
ratio rg=rl decreases. The two-phase gravity e�ect is large, for a given holdup, if the body
force in the more dense ¯uid l is comparable to the pressure gradient Ð i.e. if
jrl gsin y=�@p=@z�j0O�1�: It decreases, however, as the pressure gradient increases or the pipe
angle y decreases. In order to simplify the discussion we will only consider cases involving very
low or high viscosity ratios. We will also, without further loss of generality, assume that the
driving force in ¯uid g works in the positive z-direction i.e. that ÿBg > 0, implying that
Bl=Bg < 1 and Bl=Bg > 1 in up- and downwardly inclined pipes, respectively. (Note that ÿBg >
0 and e.g. Bl=Bg < 1 implies that Bl > Bg or �rl ÿ rg�g sin y > 1 i.e. y > 0:) We start with the
low viscosity ratio case Zg=Zl � 1 typical for gas±liquid ¯ows.
The limiting behaviour of the mean wall and interfacial shear stresses for very low viscosity

ratios �Zg=Zl40� may be obtained by neglecting all terms proportional to Zg=Zl in Eqs. (56)±
(58). The resulting expressions are thus independent of the viscosity ratio, and given by

�tg
tsg

11ÿ sin2 dg
d2
g

�59�

�tl
tsg

11� sin2 dl
dgdl

ÿ
�
1ÿ Bl

Bg

� 
dl ÿ 1

2 sin 2dl
dl

!
�60�
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�ti
tsg

1sin dg ÿ dg cos dg
dg

�61�

Studying Eqs. (59)±(61) we see that the two-phase gravity e�ect �1ÿ Bl=Bg� is only present in
the expression (60) for the mean wall shear stress in the more viscous (and dense) ¯uid l. It
does not enter into the expressions for the mean wall shear stress in ¯uid g (59) or interfacial
shear stress (61). This observation simply re¯ects the fact that the limit Zg=Zl40 corresponds
to a physical situation in which the less viscous (and dense) ¯uid g is ¯owing as in single-phase
closed duct ¯ow above an in®nitely more viscous and slower (frozen) ¯uid l. Fluid g is thus
only a�ected by the two-phase ¯ow situation through the holdup �dg� de®ning the ``duct''
geometry. This is thus also the situation for the shear stress Ð wall and interfacial Ð as seen
by ¯uid g. The more viscous ¯uid l, however, is highly dependent on the interfacial drag
exerted by in®nitely faster ¯uid g, and is thus more directly in¯uenced by the two-phase ¯ow
situation. Fig. 3 gives us an idea of how small the viscosity ratio Zg=Zl must be for the Eqs.
(59)±(61) to be good approximations. It is seen that the results for Zg=Zl � 0:01 are very close
to the limiting values Zg=Zl40 (dash dot lines), provided that the holdup is not too high. The
maximum discrepancy in any of the shear stresses is 12% i.e. O�Zg=Zl� for dl < p=2:
Fig. 5 displays the approximate mean wall shear stress (59)±(61) for 0Rdl=pR1: The left

hand plot in Fig. 5 contains a comparison for horizontal or friction dominated ¯ow.The dashed
line represents the mean duct shear stress (wall and interfacial) as seen by the less viscous ¯uid
g Ð i.e. the value of ��tgSg� �tiSi �=�Sg�Si �: The mean wall shear stress in ¯uid g is seen to be
lower than this value for all holdup. The mean interfacial shear stress on the other hand is
always higher. The maximum deviations are 1ÿ3% and 1+8.2%, respectively. The
deviations are caused by the non-circularity of the cross section occupied by ¯uid g. The mean
wall shear stress in ¯uid l is seen to reach a maximum for dl � p=2 in horizontal or friction
dominated ¯ow. It is then, as mentioned in the previous section,1 41% higher than in single-
phase ¯ow (unity).
As discussed above, the non dimensional wall shear stress in the less viscous ¯uid g and the

interfacial shear stress are una�ected by a pipe inclination and the two-phase gravity e�ect in
the low viscosity limit Zg=Zl40: The mean wall shear stress in the more viscous ¯uid l is,
however, highly in¯uenced, as may be observed in the right hand plot in Fig. 5. The plot
shows how the two-phase gravity e�ect causes the mean wall shear stress in ¯uid l to decrease
in upwardly inclined pipes Bl=Bg < 1 (thin solid lines) and increase in downwardly inclined
pipes Bl=Bg > 1 (dashed lines) Ð as the body forces oppose or work in the direction of the
¯ow respectively. The two-phase gravity e�ect decreases as the holdup decreases and the
interfacial drag becomes increasingly important. This phenomenon is connected to the fact that
the ¯ow area Al Ð acted upon by the driving force Bl Ð vanishes in the zero holdup limit,
whereas the interfacial to wetted perimeter ratio Si=Sl becomes unity. (Note that: Al=A �
El12d3l =�3p� whereas Si=Sl11 as dl40, by Eqs. (9) and (42).
Fig. 6 shows the wall and interfacial shear stress distributions (33) and (26) corresponding to

the mean values in Fig. 5 for dl � p=4,p=2 and 3p=4: The velocity and shear stress pro®les on
the vertical symmetry line of the pipe, as given by Eqs. (28) and (31) with x � 0, are also
shown. The shear stress in Fig. 6 is scaled by Eq. (55b), as in Figs. 3±5. Scaling the velocity by
((55a)), as in Fig. 4, however, causes the velocity in ¯uid g to collapse onto the single-phase
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closed duct ¯ow pro®le, irrespective of driving force ratio. The dimensionless velocity in ¯uid l,

on the other hand, becomes zero in the limit Zg=Zl40 (see corresponding (dash dot) velocity

pro®les for Zg=Zl40�: We are now, however, interested in the two-phase gravity e�ect in ¯uid

l. The velocity pro®les in Fig. 6. have therefore been scaled by the special parameter

Um � ÿBgR
2=8ml Ð i.e. the mean single-phase velocity corresponding to a viscosity Zl and

driving force Bg: This scaling magni®es the events in ¯uid l as well as in ¯uid g. The velocity

distribution in the in®nitely faster moving ¯uid g, is thus not contained in the plots.

The thick solid lines in Fig. 6. correspond to horizontal or friction dominated ¯ow, whereas

the thin solid and dashed lines correspond to gravity in¯uenced up- and downwardly inclined

¯ows, respectively Ð as in the right-hand plot in Fig. 5. The collapsing of shear stress

distributions from the interface and up re¯ects the absence of the two-phase gravity e�ect in

¯uid g, in agreement with the single-phase closed duct ¯ow behaviour for Zg=Zl40: The two-

phase gravity e�ect is, however, evident in ¯uid l, which is highly in¯uenced by the in®nitely

faster moving ¯uid g. This is clearly seen in the corresponding spread in the velocity and shear

stress distributions below the interface.

Fluid l is in pure shear ¯ow when the body forces are exactly balanced by the pressure

gradient i.e. Bl=Bg � 0, see velocity and shear stress distributions marked �
). For Bl=Bg < 0

the net driving force in ¯uid l will be directed down the pipe, since by assumption ÿBg > 0: In
this case, back¯ow may occur, starting at the bottom of the pipe, provided that the holdup is

su�ciently high for the body force to overcome the combined action of the pressure gradient

and the interfacial drag. Back¯ow may be observed in the velocity pro®les corresponding to

Bl=Bg < 0 and dl � p=2 and 3p=4 in Fig. 6 Ð i.e. to the left of the pure shear ¯ow pro®les

marked �
). The back¯ow is accompanied by corresponding negative local values in the wall

shear stress distribution. The mean wall shear stress, displayed in the right hand plot in Fig. 5,

Fig. 5. Dimensionless mean wall and interfacial shear stress (56)±(58) for Zg=Zl � 0 as given by Eqs. (59)±(61). Left-

hand plot: comparison for horizontal or friction dominated ¯ow Bl=Bg � 1: Dashed line: mean shear stress (wall
and interfacial) as seen by the less viscous ¯uid g. Right-hand plot: two-phase gravity e�ect in the wall shear stress
in ¯uid l. Thick solid line: horizontal or friction dominated ¯ow Bl=Bg � 1: Thin dashs lines: downwardly inclined

gravity in¯uenced ¯ows Bl=Bg � 1:5, 2, 2:5, 3: Thin lines: upwardly inclined gravity ¯ows Bl=Bg � ÿ2, ÿ1.5, ÿ1, 0.5,
0, 0.5.
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Fig. 6. Velocity and shear stress distributions for up and downward inclined gravity in¯uenced ¯ow in the limit
Zg=Zl40: Top two rows: velocity and shear stress distributions on vertical symmetry line. Bottom rows: wall and
interfacial shear stress. Columns left to right: dl � p=4, p=2, 3p=4: Thick solid line: horizontal or friction dominated

¯ow wall and interfacial shear stress Columns left to right: dl � p=4, p=2, 3p=4: Thick solid line: horizontal or
friction dominated ¯ow Bl=Bg � 1: Thin dashed lines: downwardly inclined gravity in¯uenced ¯ows Bl=Bg � 1:5, 2,
2.5, 3. Thin lines upwardly inclined gravity in¯uenced ¯ows Bl=Bg � ÿ2, ÿ1.5, ÿ1, 0.5, 0, 0.5.
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will eventually also become negative as the back¯ow increases and spreads towards the
interface.
The viscosity ratio may be very large Zg=Zl � 1 in two-phase ¯ows involving e.g. a highly

viscous oil on top of water. By symmetry the inclined ¯ow case for a very high viscosity ratio
Zg=Zl41 (or Zl=Zg40� may be studied by simply holding Fig. 6 upside-down. Now, assuming
that ÿBl > 0, the dashed lines correspond to upwardly inclined ¯ows i.e. Bg=Bl > 1, whereas
the thin solid lines correspond to downwardly inclined ¯ows or Bg=Bl < 1: It must also be
understood that the velocity in the now more viscous (but still less dense) ¯uid g is scaled by
Um � ÿBlR

2=8mg, and that the shear stress is scaled by the single-phase value in the more
dense ¯uid tl � ÿBlR=2: The remaining changes are the same as in the similar study using
Fig. 4, discussed at the end of Section 7.2. Holding Fig. 6 upside down displays the two-phase
gravity e�ect in the less dense ¯uid g in the high viscosity ratio limit Zg=Zl41 for which the
more dense ¯uid l behaves as in single-phase closed duct ¯ow. In this situation the wall shear
stress in ¯uid g decreases in downwardly inclined ¯ow due to the static head of ¯uid l, which
eventually forces ¯uid g to back¯ow up the pipe. (Note that the positive ¯ow direction is now
from right to left). The situation is reversed in an upwardly inclined pipe, for which the static
head of ¯uid l causes the wall shear stress in ¯uid g to increase.

8. Conclusion

The basic solution for pressure driven two-phase laminar strati®ed pipe ¯ow (33) has been
recast into a simpler form, alleviating its physical interpretation and constituting a more
convenient basis for further developments. The simpli®cations are facilitated by placing the
(bipolar) coordinate axes on the interface and vertical symmetry line of the pipe, respectively.
This reference frame emphasizes the natural two-phase symmetry and allows us to write the
solution for the phases f � g and l as one generic expression for the general phase f. A further
structuring is given by the special de®nition (22), which enables us to split the solution into a
single-phase free surface ¯ow term and a two-phase interfacial drag coupling term.
The corresponding expression for the interfacial shear stress distribution (26) now emerges

naturally as a consequence of the no-slip condition on the interface in complete analogy with
the situation in the corresponding channel ¯ow problem, solved in Appendix A. The wall shear
stress distributions (33) are obtained by formal di�erentiation. The general behaviour of the
wall and interfacial shear stresses in the triple points, where the ¯uid±¯uid interface meets the
pipe wall, are given by application of residue calculus as summarized in Section 5. The highly
organized equations developed here lead directly to the new and surprisingly simple expression
for the mean interfacial shear stress (48) representing the local solution of the boundary value
problem at the interface. This expression complements the ¯uid momentum balances (54) and
facilitates the simple computation of the exact general solution for the mean wall and
interfacial shear stresses for a given holdup and pressure drop in a given pipe containing a
given pair of ¯uids. The recast laminar ¯ow solution developed here reduces identically to the
solution for a single ¯uid f subject to a constant surface shear stress distribution, as studied in
Biberg (1999b), by a simple substitution, see discussion at the beginning of Section 7. Some
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applications of the laminar ¯ow theory to 1D turbulent ¯ow modelling are given in Biberg
(1999a).
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Appendix A. Channel ¯ow

We introduce the Cartesian coordinates �y, z� and let the z-axis point in the direction of ¯ow
and the ¯uid±¯uid interface and channel walls be de®ned by y � 0 and y �2hf, respectively.
The z-components of the Navier±Stokes equations in the channel are given by

@ 2uf
@y2
� Bf

Zf
�A1�

The boundary conditions are the no-slip conditions on the channel walls and interface, given
by

uf
ÿ
y �2hf

� � 0 �A2a�

ug�y � 0� � ul�y � 0� �A2b�
respectively, and continuous shear stress condition on the interface, given by

Zf
@uf
@y
�y � 0� � ti �A3�

Solving Eqs. (A1)±(A3) yields the solution for the velocity ®eld, given by

uf � ÿ
Bfh

2
f

2Zf

"
1ÿ

�
y

hf

�2
#z���������������}|���������������{free surface flow

3
tihf
Zf

�
13

y

hf

�z���������}|���������{shear flow

�A4�

in which the no-slip condition on the interface (A2b) determines the interfacial shear stress as

ti �
ZgBlh

2
l ÿ ZlBgh

2
g

2
ÿ
Zghl � Zlhg

� �A5�

Introducing Eq. (3) and the channel ¯ow phase fractions Ef � hf=H where H � hg � hl in Eq.
(A5), yields the alternative form
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ti � H

2
ÿ
ZgEl � ZlEg

��Zg�@p@z � rlg sin y

�
E2l ÿ Zl

�
@p

@z
� rgg sin y

�
E2g

�
�A6�

The shear stress in the z-direction (direction of ¯ow) on a surface y � constant, is given by

tf, y, z � Zf
@uf
@y
� Bfy� ti �A7�

Following the de®nitions in Fig. 1, the wall shear stresses are thus given by

tf �3tf, y, z
ÿ
y �2hf

� � ÿBfhf3ti �A8�
using Eq. (A4). Introducing Eq. (3) shows that (A8) are equivalent to the ¯uid momentum
balances in the channel, given by

hf

�
@p

@z
� rfg sin y

�
� tf2ti � 0 �A9�

Appendix B. Triple point analysis

The behaviour of the wall and interfacial shear stresses (33) and (26) in the triple points
where the interface meets the pipe wall, is given by the limits x421: Due to symmetry,
however, it su�ces to consider e.g. x41: The wall shear stress distribution (33) may be
written as

tf � ÿBfR

2
� ÿcosh x� cos df

� �1
ÿ1

Cf�o�oeiox

sinh op cosh odf
do �B1�

in which we have introduced complex notation and de®ned

Cf�o� � BfR cos df
2

3Ti�o� �B2�

inserting Ti�o� from Eq. (25), we ®nd that Cg�o� � Fgl�o� and Cl�o� � Flg�o� where

Fgl�o� � R

2

"ÿ
ZlBg ÿ ZgBl

�
o sin dg � Zg

ÿ
Bg ÿ Bl

�
cos dg tanh odl

Zg tanh odl � Zl tanh odg

#
�B3�

The integral in Eq. (B1) tends to zero as x41: The factor cosh x0ex=2, however, tends to
in®nity. The limiting behaviour of the wall shear stress (B1) is thus contained in

tf�x41� � ÿBfR

2
� ex

2

�1
ÿ1

Cf�o�oeiox

sinh op cosh odf
do �B4�

Following a similar line of reasoning starting with Eq. (26), we ®nd that the limiting behaviour
of the interfacial shear stress is contained in
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ti�x41� � ex

2

�1
ÿ1

Ti�o�oeiox

sinh op
do �B5�

Now, applying the residue theorem Ð choosing the appropriate integration path in the upper
half of the complex-o plane Ð the leading asymptotic behaviour of the integrals in Eqs. (B4)
and (B5) is found to be given by the singularity o0 �Im�o0� > 0� of the integrands closest to the
real axis. We have

�1
ÿ1

f�o�
g�o�e

iox do02pi

8>>>>><>>>>>:
1

g
0 �o0�
2

g
00 �o0�

 
ixf�o0� � f

0 �o0�
f�o0� ÿ 1

3

g
000 �o0�

g
00 �o0�

!
9>>>>>=>>>>>;
f�o0�eio0x �B6�

in the case of a single and double pole, respectively. The denominators of Cf�o� and Ti�o� in
Eqs. (B4) and (B5) are equal and the zeros on the imaginary-o axis are given by

Zg tan dlvk � Zl tan dgvk � 0 �B7�

for k � 1, 2, . . . and 0 < v0 < v1 < � � � where v � Im�o�: The zeros of the sinh op term in the
denominators of the integrands in Eqs. (B4) and (B5) are o � 0, i, 2i, . . . : The ®rst zero o � 0
will, however, be cancelled by the o-term in the numerators. If Zg=Zl > 0, the zeros of cosh odf
in Eq. (B4) will either be neutralized by the singularities in the denominator of Cf�o� or in the
case of df � p=2n coincide with a subset of the zeros in sinh op: The case Zg=Zl � 0, must be
considered separately.

. Case 1: Zg=Zl < 1 and dl < p=2: In this case, v0 > 1 and thus o0 � i: Eq. (25) yields Ti�o �
i� � 0 for Zg=Zl < 1: Combining Eqs. (B2) and (B4) thus yields

tf�x41� � ÿBfR

2
� BfR cos df

2

ex

2

�1
ÿ1

oeio

sinh op cosh odf
do �B8�

Applying Eq. (B6) (for a single pole) we ®nd that the integral in Eq. (B8) behaves as
02eÿx=cos df: We thus have tf�x41� � 0: The singularity o0 � i will not contribute to the
asymptotic behaviour of the interfacial shear stress (B5) since Ti�o � i� � 0: We must
therefore either consider o � 2i or o � iv0 if v0 < 2: The corresponding leading behaviours
of the integral in Eq. (B5) are O�eÿ2x� or O�eÿv0x�, respectively. We thus also have
ti�x41� � 0 in this case.

. Case 2: Zg=Zl < 1 and dl � p=2 �� dg�: As in Case 1, we have v0 > 1 and o0 � i: Inserting
dg � dl � p=2 in Eqs. (B4) and (B5), however, yields

tf�x41� � ÿBfR

2
3

ÿ
ZgBl ÿ ZlBg

�
R

2
ÿ
Zg � Zl

� ex

2

�1
ÿ1

o2eiox

sinh op sinh�op=2� do �B9�

and
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ti�x41� �
ÿ
ZgBl ÿ ZlBg

�
R

4
ÿ
Zg � Zl

� ex

2

�1
ÿ1

o2eiox

sinh2�op=2� do �B10�

Applying Eq. (B6) for a single pole with o0 � i, we ®nd that the integral in Eq. (B9) behaves
as 02eÿx yielding the limiting behaviour for the wall shear stresses as given by Eq. (35).
There are double poles in Eq. (B10). The closest singularity contributing to the integral is
o � 2i: Applying Eq. (B6) we ®nd that the integral in Eq. (B10) behaves as 0�32=p� �
�xÿ 1�eÿ2x and consequently that ti�x41� � 0:

. Case 3a: 0 < Zg=Zl < 1 and dl > p=2: In this case, v0 < 1 and o0 � v0i: The ®rst term in Eq.
(B2) will not contribute to the asymptotic behaviour of the wall shear stress (B4). Applying
Eq. (B6) to Eqs. (B4) and (B5) yields the limiting behaviour for the wall and interfacial
shear stress as given by Eq. (37) in Section 5, in which

K � pRv0
2 sin pv0

"
ZgBl�v0 sin dl ÿ cos dl tan�dlv0�� ÿ ZlBg

ÿ
v0 sin dg ÿ cos dg tan

ÿ
dgv0

��
dlZg sec2�dlv0� � dgZl sec2

ÿ
dgv0

� #
�B11�

The absolute value sign on the cos�dfv0�-term in Eq. (37) takes care of the fact that
2cos�dfv0� > 0: (Note that Eq. (B7) implies that Zg tan�dlv0� � ÿZl tan�dgv0� < 0 since dg �
pÿ dl < p=2 and 0 < v0 < 1:) It may be demonstrated that the sign of constant (B11) is
given by

sign�K� � sign

�Zg
Zl
Bl ÿ Bgÿ ÿBl ÿ Bg

�
k1

�
�B12�

in which k1� tan�dgv0�=�v0 tandg� and 0 < k1 < 1:
. Case 3b: Zg=Zl � 0 and dl > p=2: If f � g in Eq. (B4), then o0 � i as in Case 1, and

consequently tg�x41� � 0: Similarly, we also have ti�x41� � 0: If f � l, however, then
o0 � pi=2dl in Eq. (B4) yielding 0p2e�ÿp

2x=2dl�=d2
l sin�p2=2dl� for the integral by application

of Eq. (B6), and thus that tl�x41� � 1:
. Equal viscosity case: Zg=Zl � 1: We start by considering dl < p=2, for which o0 � i: If

Zg=Zl 6�1, Ti�o4 i� � 0: Now, however, we have the non zero limit, given by

lim
o4 i

Ti�o� � ÿR cos dl
2

ÿ
BgEg � BlEl

�
for Zg=Zl � 1 �B13�

where Ef are given by Eq. (9). Applying Eq. (B6) to Eqs. (B4) and (B5) using Eqs. (B13) and
(B2) yields the ®nite limits for the wall and interfacial shear stresses as given by Eq. (40) in
Section 5. These limits do in fact apply for Zg=Zl � 1 irrespective of holdup i.e. dl: If
dl � p=2, we obtain the identical result as given by Eq. (40) by simply inserting Zg=Zl � 1 in
Case 2 above. (Note that Ef � 1=2 for dl � p=2 and that the result ti�x41� � 0 is contained
in Eq. (40) since cos�p=2� � 0:) If dl > p=2, we may establish Eq. (40) by applying Eq. (B6)
on Eqs. (B4) and (B5) with o0 � i: We may, however, also simply take the limit of Case 3
above for Zg=Zl � 1 and v041 (the correct solution of Eq. (B7) in this case).

D. Biberg, G. Halvorsen / International Journal of Multiphase Flow 26 (2000) 1645±16731672



References

Bentwich, M., 1964. Two-phase viscous axial ¯ow in a pipe. J. Basic Eng. (12) 669±672.
Biberg, D., 1999a. Two-phase strati®ed pipe ¯ow modelling Ð a new expression for the interfacial shear stress. In:

Second International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa (Italy), 23±26 May.
Biberg, D., 1999b. Liquid wall friction in two-phase turbulent gas laminar liquid strati®ed pipe ¯ow. Can. J. Chem.

Eng. 77, 1073±1082.

Biberg, D., 1999c. An explicit approximation for the wetted angle in two-phase strati®ed pipe ¯ow. Can. J. Chem.
Eng. 77, 1221±1224.

Brauner, N., Rovinsky, J., Maron, D.M., 1996a. Analytic solution for laminar-laminar two-phase strati®ed ¯ow in

circular conduits. Chem. Eng. Comm 141/142, 103±143.
Brauner, N., Rovinsky, J., Maron, D.M., 1996b. Determination of the interface curvature in strati®ed two-phase

systems by energy considerations. Int. J. Multiphase Flow 22 (6), 1167±1185.
Charles, M.E., Redberger, P.J., 1962. The reduction of pressure gradients in oil pipelines by the addition of water:

numerical analysis of strati®ed ¯ow. Can. J. Chem. Eng. (4) 70±75.
Charles, M.E., Lilleleht, L.U., 1965. Co-current strati®ed laminar ¯ow of two immiscible liquids in a rectangular

conduit. Can. J. Chem. Eng. (6) 110±116.

Coutris, N., Delhaye, J.M., Nakach, R., 1989. Two-phase ¯ow modelling: the closure issue for a two-layer ¯ow. Int.
J. Multiphase Flow 15 (6), 977±983.

Gemmell, A.R., Epstein, N., 1962. Numerical analysis of strati®ed laminar ¯ow of two immiscible newtonian liquids

in a circular pipe. Can. J. Chem. Eng. (10) 215±225.
Joseph, D.D., 1984. Instability of the ¯ow of two immiscible liquids with di�erent viscosities in a pipe. J. Fluid

Mech 141, 309±317.
Lightstone, L., Chang, J.S., 1981. Three-dimension strati®ed laminar gas±liquid two-phase pipe ¯ow models 1991.

In: Proc. of the 2nd Int. Symp. on Multiphase Flow and Heat Transfer, Xian (China) 18±2 Sept. 1989, 67±77.
Masliyah, J.H., Shook, C.A., 1978. Two-phase laminar zero net ¯ow in a circular inclined pipe. Can. J. Chem. Eng

56, 165±175.

Packham, B.A., Shail, R., 1971. Strati®ed laminar ¯ow of two immiscible ¯uids. Proc. Camb. Phil. Soc 69, 443±448.
Ranger, K.B., Davis, A.M.J., 1979. Steady pressure driven two-phase strati®ed laminar ¯ow through a pipe. J.

Chem. Eng 57, 688±691.

Rosant, J.M., 1986. Mcanique des ¯uides Ð Metode de calcul d'un coulement diphasique, strati® et laminaire, en
conduite circulaire. C.R. Acad. Sc. Paris, t. 302, Serie II, no. 5, 197±200.

Semenov, N.I., Tochigin, A.A., 1961. An analytical study of the separate laminar ¯ow of a two-phase mixture in

inclined pipes. J. Eng. Phys 4, 29.
Tang, Y.P., Himmelblau, D.M., 1963. Velocity distribution for isothermal two-phase co-current laminar ¯ow in a

horizontal rectangular duct. Chem. Eng. Sci 18, 143±144.
Teletov, S.G., 1946. On the slow strati®ed movement of gas±liquid mixtures. Compt. Rend. Acad. Sci. U.R.S.S 51,

579.
Yu, H.S., Sparrow, E.M., 1967. Strati®ed laminar ¯ow in ducts of arbitrary shape. A.I.Ch.E. J 13 (1), 11±16.
Yu, H.S., Sparrow, E.M., 1969. Experiments on two-component strati®ed ¯ow in a horizontal duct. J. Heat Transf.,

Trans. of the ASME 91, 51±58.

D. Biberg, G. Halvorsen / International Journal of Multiphase Flow 26 (2000) 1645±1673 1673


